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Wave transport through thin slabs of random media with internal reflection:
Ballistic to diffusive transition

Xiangdong Zhang and Zhao-Qing Zhang*
Department of Physics and Institute of Nano Science and Technology (INST), The Hong Kong University of Science and Tech

Clear Water Bay, Kowloon, Hong Kong, China
~Received 15 March 2002; published 26 July 2002!

The static and dynamic properties of wave transport through thin slabs of random media in the presence of
internal reflection are investigated by performing first-principles calculations. These results are compared with
results from time-independent and time-dependent diffusion equations, respectively, where the effects due to
internal reflection are incorporated into an average extrapolation length in the boundary conditions. For the
static properties, we find an abrupt transition from ballistic to diffusive behavior when sample thickness is
about three mean free paths, i.e.,L'3l . The diffusion approximation is valid whenL.3l , independent of the
amount of internal reflection. For the dynamic properties, both the peak arrival time at short times and the
diffusion constant at long times of the transmitted pulse indicate that there is a region of anomalous diffusion
when 3l ,L,Lc . The diffusion constant in this region increases with decreasingL. It also increases with the
amount of internal reflection. The physical origin of the existence of such an anomalous region is the
resonance-induced wave focusing effect. Due to the presence of internal reflection, the wave energy tends to
concentrate in the forward direction at output boundary. It makes direction randomization difficult in the
scattered waves. A similar wave focusing effect has been found in resonant tunneling systems of electrons in
the presence of elastic scattering. The diffusion approximation is valid whenL.Lc . The value ofLc is about
ten times the average extrapolation length, i.e.,L'10ze , whereze is a fast increasing function of the amount
of internal reflection.
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I. INTRODUCTION

The study of wave propagation through random media
been an intensive field of research for many decades@1#.
Many aspects of the transport of waves in random me
such as coherent backscattering, continuous-wave trans
sion, pulse propagation, and speckle correlations, are
described by the diffusion approximation@2–5#. Despite the
success and widespread use of this simple approxima
limitations do exist. One such limitation occurs in th
samples, where the number of scatterings becomes ins
cient to randomize the phases of the emerging waves a
crossover to ballistic transport must ultimately occur. In
cent years, many works have discussed such crossove
havior @6–14#. In experimental respects, many investigatio
have probed such crossover behavior with different transi
lengths, which depend on the physical quantities measu
For example, diffusing wave spectroscopy~DWS! experi-
ments @6# and steady state photon transmission meas
ments@3# have indicated that the transport of photons is d
fusive when sample thicknessesL is as low as 3-5 transpor
mean free pathsl. In contrast, pulsed optical transmissio
measurements@7–9# have reported systematic deviatio
from diffusion theory at much larger values ofL/ l<8210.
Within the context of DWS, a solution of the transport equ
tion has been derived to account for the contributions
short scattering paths, which are increasingly ballistic in
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ture, resulting in a simple correction to the diffusion appro
mation @10#. In another approach, the telegrapher equat
with suitable boundary conditions has been employed to
count for the role of ballistic transport and scattering anis
ropy @11#. In a recent work@12#, ultrasonic pulse transmis
sion experiments in strongly scattering media consisting
glass beads immersed in water have been carried out. A
same time, first-principles calculations of both the frequen
correlation function of the transmitted field and the tim
domain profile of the transmitted intensity have been p
formed by solving the ladder approximation of the Beth
Salpeter equation with the use of the bulk Green’s functi
From the peak arrival time, both theory and experime
have exhibited an abrupt crossover between ballistic and
fusive behaviors whenL/ l'3.

Although the Bethe-Salpeter equation describes the tra
port of waves in thin samples where the diffusion appro
mation breaks down, the use of the bulk Green’s funct
becomes inadequate when the system possesses large
nal reflection at the sample boundaries. Internal reflect
have been shown, both experimentally and theoretically
be of considerable importance in the diffusive transport
light through random media@15–20#. In the presence of
large internal reflection, a Green’s function that includes
multiple reflections from the boundaries should be us
Such a study has been carried out on a semiinfinite sam
@20#. However, a systematic first-principles study of wa
transport through thin samples of random media in the p
ence of large internal reflection has not been conducted.
thick samples, an improved diffusion approximation h
been successfully used in interpreting experimental res
@3,7#. In this improved diffusion approximation, the effec
:
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of internal reflection at the boundaries is incorporated int
single extrapolation lengthl e in the mixed boundary condi
tion @15,16#. It has been shown that this improved diffusio
approximation becomes asymptotically exact in the limit
the large index mismatch in a semifinite sample@20#. How-
ever, the validity of the improved diffusion approximation
thin samples has not been tested.

In this work, we study wave transport through thin sla
of random media by performing first-principles calcuatio
using the ladder approximation for the Bethe-Salpeter eq
tion, in which a renormalized single-particle averag
Green’s function that incorporates all internal reflectio
from the boundaries will be used. Thus, our calculations
beyond the limitations of the diffusion approximation a
allow us to include the coherent multiple reflections of wav
from two boundaries. Thus, our results are valid for th
samples with any amount of internal reflection. Our focus
on the crossover behavior in the ballistic-to-diffusive tran
tion as a function of the index mismatch from both static a
dynamic points of view. For the static quantities, we stu
the total transmitted intensity under a plane-wave incide
For the dynamic quantities, we study the shape of tim
resolved transmitted pulse under a pulsed plane-wave
dent. For the static behavior, we find an abrupt transit
from ballistic to diffusive behavior whenL/ l'3. The diffu-
sion approximation is valid whenL/ l .3, independent of the
amount of internal reflection. However, for the dynam
properties, from both the peak arrival time at short times a
the diffusion constant at long times of the transmitted pu
we find a region of anomalous diffusion when 3l ,L,Lc , in
which the diffusion constant increases with decreasingL.
The physical origin of the existence of such an anomal
region is the resonance-induced wave focusing effect. Du
the presence of internal reflection, the wave energy tend
concentrate in the forward direction. This focusing effe
makes the randomization of wave propagation direct
more difficult. A similar wave focusing effect has been fou
in resonant tunneling systems of electrons in the presenc
elastic scattering@21#. The diffusion approximation is valid
whenL.Lc . The value ofLc is about ten times the average
extrapolation length, i.e.,L'10ze , where ze is a fast in-
creasing function of the amount of internal reflection. In S
II, we present the analytical formulas for both the Beth
Salpeter equation and the improved diffusion theory. The
sults of these calculations are presented in Sec. III. Sec
IV presents the discussion as well as the conclusions of
work.

II. THEORY

We consider a pulsed plane wave that is normally incid
on the front surface,z50, of a slab-shaped sample contai
ing isotropic random scatterers. The thickness of the sam
is L. The optical index is assumed to take different values
three regions, namely,n1 outside the scattering medium (z
,0), n inside the scattering medium (0,z,L), andn2 out-
side the scattering medium (z.L). To investigate wave
transport through this scattering medium, we are intereste
modeling the temporal evolution of the intensity and the f
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quency correlation function of the field, probed at the ba
face of the sample atz5L. At any timet and positionrW, the
field is specified by the time-dependent wave function, wh
can be written as

c~ t,rW !5~2p!21E dV exp~2 iVt ! f ~V!fV~rW !, ~1!

where f (V) describes the spectrum of frequenciesV, con-
tained in the pulse andfV(rW) is the spatial part of the wave
function. In order to obtain useful physical information, w
have to consider the ensemble-averaged quantities for
random systems. The ensemble-averaged intensity co
sponding to Eq.~1! can be expressed as

^uc~ t,rW !u2&5~2p!22E dVF E dv f ~V1! f * ~V2!

3^fV1~rW !fV2* ~rW !&exp~2 ivt !G , ~2!

where^& denotes configurational averaging, and the frequ
ciesV65V6(v/2) have been written in terms of the cent
frequencyV and the difference or modulation frequencyv,
the latter also being conjugate to the travel timet. From Eq.
~2! it is clear that the ensemble-averaged intens

^uc(t,rW)u2& is given by the Fourier transform of the fre
quency correlation functionCV(v,rW)5^fV1(rW)fV2* (rW)&,
which is the fundamental quantity to be determine
CV(v,rW) can be obtained from the space-frequency corre
tion function C̃V(v,rW,r 8W )5^fV1(rW)fV2* (r 8W )&, which is
known to satisfy the Bethe-Salpeter equation

C̃V~v,rW,r 8W !5^w inc~rW,V1!&^w inc* ~r 8W ,V2!&

1E dr1
Wdr2

Wdr3
Wdr4

W ^GV1~rW,r 1
W !&

3^GV2* ~r 8W ,r 2
W !&U~r 1

W ,r 3
W ;r 2

W ,r 4
W !C̃V~v,r 3

W ,r 4
W !,

~3!

where ^w inc(rW,V6)& is the configurationally averaged inc
dent wave function inside the sample and takes the follow
forms for the case of a normally incident plane wave cons
ered here@20#:

^w inc~z,V!&5eip1z1re2 ip1z, z,0,

^w inc~z,V!&5t1eip̃z1t2e2 i p̃z, 0,z,L, ~4!

^w inc~z,V!&5teip2z, z.0,

where p15V/v1 , p̃5V/v1 i /(2l ), and p25V/v2. Here
v15c/n1 , v5c/n, and v25c/n2 are the wave speeds i
three different regions. For convenience, we set the valu
c to unity. The coefficientsr, t1 , t2, and t should be deter-
mined from the boundary conditions at the two surfaces. I
easy to show thatt1 and t2 take the forms:
2-2
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t15
2p1~ p̃1p2!

~ p̃1p1!~ p̃1p2!2~ p̃2p1!~ p̃2p2!e2i p̃L
, ~5!

t25
2p1~ p̃2p2!e2i p̃L

~ p̃1p1!~ p̃1p2!2~ p̃2p1!~ p̃2p2!e2i p̃L
. ~6!

The coefficientsr and t will not be needed in our calcula
tions.

The functionU in Eq. ~3! stands for the summation of a
irreducible vertex functions. For isotropic scattering, t
scattering mean free path is equal to the transport mean
path and they are both denoted byl. The lowest-order con-
tribution to the vertex function becomes@22#

U~r 1
W ,r 3

W ,r 2
W ,r 4

W !5
4p

l
d~r 1

W2r 3
W !d~r 1

W2r 2
W !d~r 3

W2r 4
W !. ~7!

With this form for U, Eq. ~3! generates a sum of ladde
diagrams, which represents the multiple scattering of wa
without interference effects. The averaged single-part
Green’s function̂ GV(rW,r 8W )& in Eq. ~3! represents the coher
ent wave transport inside the sample between two sca
ings. In the presence of internal reflection, the funct

^GV(rW,r 8W )& loses its translational invariance in thez direc-
tion and possesses the translational invariance only in
transverse plane. It is more convenient to write^GV(rW,r 8W )&
as

^GV~rW,r 8W !&5~2p!21E ^G~z,z8;q!&exp@ iqW •~rW 2r8W !#dqW ,

~8!

whererW denotes the position ofrW in the transverse plane.qW is
the transverse wave vector. In order to incorporate all
multiple reflections between two surfaces, the funct
^G(z,z8;q)& must satisfy the following one-dimension
wave equation@20#:

S d2

dz2
2q21k1

2D ^G~z,z8;q!&50, z,0,

F d2

dz2
2q21S k1

i

2l D
2G ^G~z,z8;q!&50, 0,z, z8,L,

~9!

S d2

dz2
2q21k2

2D ^G~z,z8;q!&50, z.0.

From the above equations, the Green’s functions corresp
ing to the three regions can be obtained easily. In our ca
lations, we need only the Green’s function inside the s
region (0,z,L), which takes the form:
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G~z,z8;q!5
1

2ip F 1

r 1r 22e22iLpG
3@r 1e22idpeip(z1z8)1e22iLpeipuz2z8u

1r 1r 2e2 ipuz2z8u1r 2e2 ip(z1z8)#, ~10!

where r 15(p2p0)/(p1p0), r 25(p2p08)/(p1p08) and p0
2

5k1
22q2>0, p25(k1 i /2l )22q2, andp08

25k2
22q2>0.

Since, for our purpose, only the frequency correlati
function CV(v,rW) is needed, we can solve the Beth
Salpeter equation for the simpler case whererW85rW. Thus,
Eq. ~3! becomes

C̃V~v,z!5^w inc~rW,V1!&^w inc* ~rW,V2!&

1
2

l E dz1H~z,z1!3C̃V~v,z1!, ~11!

where

H~z,z1!5E
0

`

qGV1~z,z1 ,q!GV2* ~z,z1 ,q!dq. ~12!

Equation~11! takes the form of the Milne equation. It is
Fredholm integral equation of the second kind with a sing
lar kernel that can be solved numerically by using the st
dard method@22,23#. After the frequency correlation func
tion is obtained, it is straightforward to calculate th
temporal variation of the transmitted intensity from Eq.~2!.
In our calculations, we focus on a particular center freque
V. Thus, the precise form off (V) is irrelevant. Since we
ignore all the interference effects in the Bethe-Salpeter eq
tion, our results are valid whennV l @1. In this limit, our
results are insensitive to the value ofV.

For the static quantity, we calculate the diffusive part
the total transmitted intensity at the output surface, wh
can be obtained from the quantityC̃V(0,LW ,LW )
2^w inc(LW ,V)&^w inc* (LW ,V)& in Eq. ~2!. In order to compare
the results obtained from the above first-principles calcu
tions with those of the diffusion approximation, we summ
rize below some known analytical results for the diffusi
approximation. The time-dependent diffusion equation
the intensity in a slab of thicknessL takes the form:

]I ~rW,t !

]t
2Do¹2I ~rW,t !1I ~rW,t !5Q~rW,t !, ~13!

whereDo5 l /3n is the bulk diffusion constant of the scatte
ing medium. Q(rW,t) denotes the source function. For
pulsed plane-wave incident, we can writeQ as d(z2zp)
d(t). Herezp represents the coherent penetration depth of
source. For a plane-wave incident, the intensity become
function of z and t. As for the boundary conditions, it ha
been shown that the effects of internal reflection can be
counted for by incorporating an extrapolation lengthze into
the boundary conditions of the diffusion equation, which
related to the internal reflection through
2-3
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ze5al~11R!/~12R!, ~14!

wherea52/3 andR represents the ratio of the incoming flu
to the outgoing flux and can be obtained from the ang
averaged reflection coefficient, i.e.,R5^R(u)& @16#. For sca-
lar waves, the formula for̂R(u)& is given in Table I of Ref.
@20#. In the absence of internal reflection, the transp
theory gives the Miline result ofa50.71@24#. If both bound-
aries have the same index mismatch, the solution of Eq.~13!
takes the form@15#:

I ~z,t !5
2

d (
m51

`

sinFmp

d
~ze1zp!GsinFmp

d
~z1ze!G

3expF2DotS mp

d D 2G , ~15!

whered5L12ze . In the static limit of a continuous plane
wave incident, the source function becomesQ5d(z2zp).
The static solution of Eq.~13! gives the following intensity
at z5L:

I ~L !5
3ze~ze1zp!

lv~2ze1L !
. ~16!

Equation ~16! shows that the inverse ofI (L) is a straight
line. The zero ofI (L)21 is twice the extrapolation lengthze .
In fact, from the solutions of the Bethe-Salpeter equation
large sample thicknesses, one can also obtain numericall
value ofze from Eq. ~16! by extrapolatingI (L) to negative
L. This result should be compared with the prediction of E
~14! used in the diffusion approximation.

Finally, we determine the penetration depthzp , used in
the diffusion approximation in the following way. We firs
assume a distribution ofzp weighted by an exponential a
tenuation of the coherent intensity@25#. SinceI (L) is linear
in zp , the average intensity,^I (L)&zp

takes the form of Eq.

~16!, except replacingzp by an average penetration dept
^zp& @25#, i.e.,

^zp&5

E
0

L/ l

zpe(2zp / l )d~zp / l !

E
0

L/ l

e(2zp / l )d~zp / l !

. ~17!

It is easy to see that whenL@ l , ^zp&' l .

III. NUMERICAL RESULTS

For simplicity, we first consider the case of a slab of sc
tering medium with an optical indexn, embedded in a ho
mogeneous background with optical index unity. Thus, b
surfaces of the slab have the same index mismatch.
cases in which two boundaries have different mismatc
will be considered later. We numerically solve Eqs.~2! and
~3! at different values ofn and L/ l . For the static case, th
diffusive part of the transmitted intensity at the output s
face is obtained from the numerical solution of Eq.~2!
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through I (L)5C̃V(0,LW ,LW )2^w inc(LW ,V)&^w inc* (LW ,V)&. We
plot the inverse ofI (L) as a function ofL/ l in Figs. 1~a–c!
in circles for n51, 1.3, and 1.6, respectively. The case
n51 represents no internal reflection. It is interesting to s
that all these three cases show similar crossover beha
For L/ l .3, the data points follow three straight lines, ind
cating diffusive behavior according to Eq.~16!. The extrapo-
lation length ze can readily be obtained by extrapolatin
these lines to the real axes. We findze / l'0.7, 1.7, and 3.2
for n51, 1.3, and 1.6, respectively. These numbers ag
excellently with the prediction of Eq.~14! whena50.71 is
used. If we use the calculated values of the angle-avera
reflection coefficientR50.43 and 0.65 forn51.3 and 1.6,
respectively, according to Eq.~14!, we find ze / l'1.78 and
3.35. The values ofze / l obtained here will be used in th
dynamic calculations below. Figure 1 clearly shows
abrupt crossover from ballistic to diffusive behavior at
transition thickness ofL/ l'3, independent of the index mis
match. Thus, for the static behavior, the improved diffusi
approximation of Eq.~16! is valid as long asL/ l .3, which
is insensitive to the amount of internal reflection at t
sample boundaries. This conclusion is consistent with
experimental data given in Ref.@3#.

For the dynamical behavior, the time-resolved transmit
intensitiesI (L,t), calculated from Eqs.~2! and~3! for a slab
of L/ l 58 with n51, 1.3, and 1.6 are shown as dotted curv
in Figs. 2~a–c!, respectively. Here, for convenience, we ha
normalized the intensity so that its peak value is unity. T
three insets show the semilog plots of the same quantitie
straight line at the long intervals is expected from the dif
sion approximation. Its slope gives the decay time, which
turn determines the diffusion constant through 1/tD
5p2D(L)/(L12ze)

2 @7#. In Fig. 2, we also plot the result
of Eq. ~15! as solid lines in each case for comparison. For
case ofn51, the excellent agreement between the results
Eqs.~2!, ~3!, and~16! in Fig. 2~a! indicates that the behavio
of the pulse propagation through a slab of thicknessL/ l 58
can be well described by the diffusion approximation. Ho
ever, this is not true for the cases ofn51.3 andn51.6. A
discernible deviation appears whenn51.3. This derivation
becomes more distinct as the value ofn is increased. In par-
ticular, we notice that the slopes of the dotted lines in
insets of Figs. 2~b! and 2~c! are different from those of the
solid lines. This indicates diffusive behavior but with a d
fusion constant different from that of the bulk system, i.
D(L)ÞDo5 l /3n. This anomalous transport behavior in th
samples has been reported in various experiments@7,12,21#.
Thus, for the dynamic behavior, unlike in the static ca
there exists an anomalous diffusive region between the
listic transport and the diffusive transport of a bulk system
which a scale-dependent diffusion constant appears. To
derstand better the transport behavior in this anomalous
gion, we study systematically both the peak arrival timetp at
short times and the diffusion constantD(L) at long times.
The log-log plot oftp as a function ofL/ l at n51, 1.3, and
1.6 are shown as open circles in Figs. 3~a–c!, respectively.
The solid lines are the results obtained from Eq.~15!. The
result of Fig. 3~a! for the case ofn51 recovers the previous
2-4
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result of Ref.@12#, where a bulk Green’s function was use
in Eq. ~3!. The two-segment behavior shown in Fig. 3~a!
clearly indicates a rather abrupt crossover from ballistic
diffusive behavior atL/ l 53, below which the slope is 1 an
above which it changes to 2 suddenly. Such an abrupt t
sition was first reported in Ref.@12#. However, if we look
more carefully, there exists a slight difference between
solid line and circles~marked by the dotted line! in the re-
gion of 3>L/ l>5. This difference, as well as the region
spans, increases with the amount of internal reflection as
be seen from Figs. 3~b! and 3~c!. For the cases ofn51.3 and
1.6, the circles overlap with the solid lines whenL/ l'15 and
30, respectively. These values are about ten times the
trapolation length in each case. The existence of this ano
lous region becomes more obvious in Fig. 4, where the n
malized diffusion constantD(L)/Do is plotted as a function
of L/ l for n51 ~diamonds!, n51.3 ~squares!, and n51.6
~circles!. The deviations from unity represent the anomalo
diffusion. It first appears whenL/ l'8, 15, and 32 forn
51, 1.3, and 1.6, respectively. These results are consis
with the analyses oftp shown in Fig. 3. From Fig. 4, we als
find that D(L) increases withn, but decreases withL. The
physical reason for such a behavior will be discussed be
Thus, for the dynamic behavior, we can separate the w
transport into three different regions:~i! ballistic, ~ii ! anoma-
lous diffusive, and~iii ! bulk diffusive. The crossover thick
ness is very sensitive to the amount of internal reflection

Finally, we consider the case in which two surfaces ha
different index mismatches. For convenience, we cons
the experimental systems given in Ref.@7#, in which the

FIG. 1. The inverse of intensityI (L)21, as a function of the slab
thickness forn51 ~a!, n51.3 ~b!, andn51.6 ~c!. The solid lines
are the calculated results and the dotted lines are the fitted res
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values ofn1 , n, andn2 are, respectively, 1, 1.34, and 1.46.
this case, the angle-averaged reflection coefficients areRl
50.47 andRr50.02 for the left and right boundaries, re
spectively. The corresponding extrapolation lengths are 1l
and 0.74l , yielding an average value ofze51.36l . The result
of D(L)/Do is plotted as triangles in Fig. 4. Again, deviatio
from the diffusion approximation appears whenL'10l ,
which is about 7ze–8ze .

IV. DISCUSSION AND CONCLUSIONS

In order to understand the physical origin of th
anomalous diffusion in thin samples, we plot
Fig. 5~a! the scattered static intensityI (z)5C̃V(0,zW,zW)
2^w inc(zW,V)&^w inc* (zW,V)& as a function ofz for the case of
L/ l 52 andn51.6 atV516 ~solid curve! andV58 ~dotted
curve!. The existence of large spatial oscillations inI (z) in-
dicates that the scattered waves possess a significant po
of the coherent property. It is also seen that the oscillati
become more significant near the sample boundaries du
the presence of internal reflection. The number of osci
tions inside the sample is roughly equal tonLV/p, which
has the value 8.14~16.3! when V58(16). For the sake of
comparison, in Fig. 5~b!, we also plot the coherent part of th

lts.
FIG. 2. The time profile of the transmitted intensity for th

sample thicknessL/ l 58 with different index mismatches.~a! n
51, ~b! n51.3, and~c! n51.6. The solid lines are the results from
the diffusion theory@Eq. ~15!# and the dotted lines are from Eq.~2!.
The dot-dashed line marks the ballistic segment.
2-5
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FIG. 3. The peak positions in
the time profile of the transmitted
intensity plotted as a function o
the sample thickness,L/ l . ~a! n
51, ~b! n51.3, and~c! n51.6.
The solid lines are the results from
the diffusion theory@Eq.~15!# and
the dotted lines are from Eq.~2!.
e
c

sc
a
ve
r

io
n

ifi
pl

e
m
e
er
ra
ha

ems
the
iple
ock
the
g
the
the

g to
tes
o-
of

o
y

fu
wave, i.e.,̂ w inc(zW,V)&^w inc* (zW,V)&. Although the number of
oscillations between the coherent and scattered parts ar
same, there is a major difference between the two. The
herent intensity has an exponential decay, whereas the
tered intensity decays linearly. A linear decay is the char
teristics of diffusive transport. Thus, the scattered wa
show both ballistic and diffusive behavior. This is not su
prising for such a thin sample, i.e.,L/ l 52. When the sample
thickness is increased, it is expected that such oscillat
will die off and a full diffusive behavior will be reached. I
Fig. 6, we plot the similar curves for the case ofL/ l 54. It is
indeed found that overall oscillations have reduced sign
cantly. However, large oscillations still persist near sam
boundaries where the period approximately equals top/nV.
The presence of such enhanced oscillations is entirely du
internal reflection and has significant effects on the dyna
cal transport. Since the period of these oscillations is clos
that of the coherent wave, it suggests that the wave en
tends to concentrate in a resonant state that has small t
verse wave vector. A similar wave focusing phenomenon

FIG. 4. The calculated diffusion constants as a function
sample thicknessL. The bulk diffusion constant is characterized b
the diffusion constantD0. The plotted data are scaled withD0 ~dot-
dashed line!. The diamonds are forn51, the squares forn51.3,
the circles forn51.6, and triangles for experimental results@7#.
Crosses represent the results calculated using the bulk Green’s
tion.
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been observed for electrons in resonant tunneling syst
@21#. The presence of elastic scattering tends to focus
tunneling electrons into a resonant state. Thus, the mult
reflection of the waves between two boundaries tends to l
the wave scattering into the forward direction and make
direction randomization difficult. Due to this wave focusin
effect, the incident angles of the scattered waves at
sample boundaries are not evenly distributed. Thus,
angle-averaged reflection coefficient calculated accordin
an even distribution of incident angles actually overestima
the value ofR @16#. This, in turn, overestimates the extrap
lation length l e , and therefore, gives a larger value
D(L)/Do . The spatial oscillations ofI (z) die off when L

f

nc-
FIG. 5. ~a! The scattered intensityI (z) as a function ofz/ l for

L/ l 52 slab. The dotted line is forV58 and the solid line forV
516. Figure 5~b! represents the coherent wave intensity.
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becomes large or when index mismatch becomes small. T
disappear entirely when sample thickness is about 10ze . This
explains whyD(L)/Do shown in Fig. 4 increases with in
creasingn and with decreasingL.

It is also interesting to notice in Fig. 5~a! that the scattered
intensitiesI (z), at z50 andz5L are independent ofV. In
fact, this is also true whenvÞ0. In other words, the function
C̃V(v,LW ,LW )2^w inc(LW ,V1)&^w inc* (LW ,V2)& is insensitive to
the value ofV when nV l @1. Thus, our previous result
shown in Figs. 1–4 are independent of the value ofV used
as long asV lies in the weak scattering regime, i.e.,nV l
@1. To show this, we plot in Fig. 7, the time-resolved tran
mitted intensity I (L,t), calculated from bothV58 ~open
circles! and V516 ~filled squares! for the case ofL/ l 52.
The two curves completely overlap each other.

For the case ofn51, our Eqs.~2! and ~3! underestimate
the diffusion constant in thin samples, i.e.,D(L)/Do<1. The
reason is as follows. Even whenn51, a small amount of
internal reflection still exists at the boundaries due to
presence of disorder inside the sample, as can be seen
the termi /2l in Eq. ~9!. This small amount of internal reflec
tion has been included in Eq.~2! through the use of̂w inc&
and G in Eqs. ~4! and ~9!, respectively. However, it is no
included in the calculation ofze in Eq. ~14!. Thus, such an
underestimation ofze produces a smallerD(L). In fact,
when we use the bulk Green’s function and the functionw inc
used in Ref.@12#, the results ofD(L)/Do are shown as
crosses in Fig. 4. In this case, the Bethe-Salpeter equa
excellently reproduces the results of the diffusion appro
mation forL>3.

Finally, we should point out again that, in this work, w

FIG. 6. Same as Fig. 5~a! exceptL/ l 54.
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consider only the weak scattering regime, wherenV l @1,
and no interference effects have been included in our ca
lations. However, the experimental observations of anom
lous transport in strongly scattering media always show
reduction ofD(L) in thin samples@7,12,25#. The reduction
may be due to wave interference effects. In thin samples,
intensity at long times come from waves that have lo
travel paths in the transverse plane. A reduced dimension
in thin samples likely makes interference important. How
incorporate the effects due to interference into the diffus
constant in thin samples with internal reflection remains
interesting and challenging task for future study.

In conclusion, the static and dynamic features of wa
transport through a slab of strong scattering medium in
presence of internal reflection is investigated by perform
first-principle calculations. Our calculations, based on
ladder approximation of the Bethe-Salpeter equation with
use of a renormalized Green’s function, are valid in the we
scattering regime for any amount of internal reflection. Th
can be applied to any waves satisfying the classical w
equation. The effects of internal reflection on the transit
from ballistic to diffusive behavior are analyzed in detail. A
abrupt crossover from ballistic to diffusive transition h
been found whenL'3l . However, from the analyses of th
dynamic properties, we find a region of anomalous diffus
when 3l ,L,Lc , in which the diffusion constant increase
with decreasingL. The existence of such an anomalous d
fusive region is due to the resonance-induced wave focu
effect that makes the directional randomization difficult du
ing the scattering process. The diffusion approximation
valid whenL.Lc . The value ofLc is about ten times the
average extrapolation length, i.e.,L'10ze , whereze is a fast
increasing function of the amount of internal reflection.
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FIG. 7. The time-resolved transmitted intensity,Ln@ I (L,z)#, as
a function oft ~in units of L/c) for L/ l 52 slab. The open circles
representV58 and the filled squares are forV516.
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